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in the calculations has the character of a state built on the
0þ2 level, and while it is gratifying that the enhanced E1
transitions to the K! ¼ 0þ2 band are reproduced, the cal-
culations also indicate strong E1 transitions to the ground-
state band, which are overpredicted by more than an order
of magnitude on average.

Table I also lists the E2 transition rates, with the same e2
effective boson charges as used for the positive-parity
states [19]. There are a number of strongly enhanced E2
transitions observed connecting the negative-parity bands,
and while in some cases these may involve mixed E2=M1
transitions for which the " value is unknown, others are
!J ¼ 2 transitions that must be purely E2 in nature. Of
particular interest are the enhanced E2 transitions between
the K! ¼ 0#2 band and the K! ¼ 0#1 band, with the 3# !
3# transition perhaps as large as that of the K! ¼ 0þ2 !
2þgsb transition. As can be seen in Table I, some transitions

are more than an order of magnitude stronger than pre-
dicted. The serious discrepancies observed for both the E1
and E2 transition rates reveal that the IBM calculations at
the critical point do not reproduce in detail the nature of the
negative-parity levels in 152Sm.

In the traditional interpretation of the structure of 152Sm,
the 0þ2 level might be regarded as an excellent candidate
for a # vibration, as it has a large BðE2; 0þ2 ! 2þ1 Þ ¼
33:3& 1:3 W:u: [10] and a large $2ðE0Þ value of 58& 6'
10#3 [20], in line with expectations [21]. However, the
large two-neutron-transfer cross section implies signifi-
cant, if not dominant, pairing components [21]. In a recent
study [8] of 152Sm via Coulomb excitation, no candidates
for higher-lying multiphonon # vibrations were found up
to an energy of nearly 4' Eð0þ2 Þ, providing additional
support that the 0þ2 level cannot be interpreted as a
# vibration. Together with the K! ¼ 2þ, 0þ2 ( % band
discovered in Ref. [8], a picture is emerging of a series
of repeating rotational bands built on the 0þ2 state similar to
those built on the ground state.

In summary, the (n, n0%) reaction has been used to study
the negative-parity excitations below 2 MeV in 152Sm. A

new K! ¼ 0# band is established with a band head at
1681 keV that bears a striking similarity in its decay to
the K! ¼ 0þ2 band to the K! ¼ 0#1 band and its decay to
the ground-state band. TheK! ¼ 0#2 band is assigned as an
octupole excitation built on the 0þ2 state and is thus the first
firm example of such an excitation in a deformed nucleus.
Calculations with the spdf IBM with values of parameters
close to the critical point for the Uð5Þ-SUð3Þ phase tran-
sition display serious discrepancies with the data. The
emerging pattern of repeating excitations built on the 0þ2
level may indicate rather that 152Sm is a complex example
of shape coexistence.
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FIG. 3. Partial level scheme showing the negative-parity bands assigned in 152Sm with transitions labeled with their absolute BðE1Þ
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Experimental set-up  

•  Target: 31 grams (96% enriched) 150Nd 
sample (Nd2O3) 

•  7-MV Van de Graaff accelerator 
•  Mono-energetic neutrons  
•  Pulsed beam  
•  Time-of-flight gating  

Excitation Function: 
Beam Energy: 
from 1.2 to 2.7 MeV in 100-keV steps 
(detector at 125°) 

Angular Distribution: 
5 to 12 Different Angles 
(Angles between 40° and 155°) 
Beam Energy:  
1.2, 1.4, 2.05, and 2.7 MeV 

150Nd(n,n'γ ): Singles Measurements  

Neutron Production: 

1H + 3H →  3He + n    
    (Q = - 0.764 MeV) 

Schematic view 
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Coincidence Measurements 
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Excitation function plot for 804-keV transition 

Coincidence spectrum with ground state transition 
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•  Beam energy: 3.2 MeV 
•  4 HPGe detectors 
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Angular distribution 

1435 keV   2-   1483 keV   (3-) 1565 keV   4-  

a2 = 0.18(1)  a4 = 0.00(1)   a2 = -0.20(3)  a4 = 0.03(4)   a2 = -0.23(2)  a4 = 0.00(3)   



Comparison	  of	  Experimental	  ExcitaPon	  FuncPon	  with	  a	  
StaPsPcal	  Model	  (CINDY)	  
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En	  =	  1.2	  MeV	  
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En	  =	  1.4	  MeV	  

En	  =	  2.05	  MeV	  

LifePme	  Results	  
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There is no explanation  for the large E1 transitions seen 
between a Kπ= 2- band and the lowest Kπ= 2+ in 150Nd and 
152Sm. 
 

Theoretical predictions 

A simple coupling of an octupole degree of freedom (Kπ= 0- 

2- or 3-) to a γ vibration (Kπ = 2+ ) would result in a range of 
possible K-bands  between K= 0 and K= 5. The operation of 
the K = 0, ±1 selection rule for E1 transitions would favor 
the decay pattern Kπ = 2- → Kπ = 2+ observed . 

⊕	  New	  Level	  
New	  Spin	  

in	  mW.u.	  

152Sm90 150Nd90 



 

• Excited states in 150Nd have been investigated 
with the 150Nd(n,n'γ ) reaction. 
• A Kπ = 0- band and new Kπ = 2-  band are 
established. 
• Level lifetimes have been determined.  
• New spin assignments have been made. 
• Lifetime data reveal a strongly enhanced 
pattern of E1 transition strengths, similar to that 
observed in 152Sm. 
• A new pattern of octupole collectivity  has been 
observed at N=90. 
 

Summary 
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